FISEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

[2-(4-Phenyl-4-piperidinyl)ethyl]amine based CCR5 antagonists: derivatizations at the N-terminal of the piperidine ring

Maosheng Duan ^{a,*}, Christopher Aquino ^b, Robert Ferris ^a, Wieslaw M. Kazmierski ^a, Terry Kenakin ^c, Cecilia Koble ^a, Pat Wheelan ^a, Chris Watson ^c, Michael Youngman ^a

- a Infectious Diseases Center for Excellence in Drug Discovery, GlaxoSmithKline, Five Moore Drive, Research Triangle Park, NC 27709, United States
- b Metabolic Pathways Center for Excellence in Drug Discover, GlaxoSmithKline, Five Moore Drive, Research Triangle Park, NC 27709, United States
- ^c Molecular Discovery Research, GlaxoSmithKline, Five Moore Drive, Research Triangle Park, NC 27709, United States

ARTICLE INFO

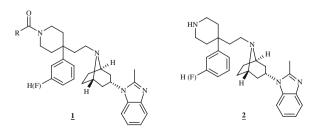
Article history: Received 9 January 2009 Revised 30 January 2009 Accepted 3 February 2009 Available online 10 February 2009

Keywords: CCR5 Antagonist Derivatization Antiviral

ABSTRACT

Several series of CCR5 antagonists have been discovered by derivatization at the N-terminal of the piperidine ring of the core template **2**. Some derivatives exhibited potent inhibition against HIV-1infection. The pharmacokinetic properties of the lead compounds **11a**, **14a**, **15b**, and **16b** have been evaluated in the core template **2**.

© 2009 Elsevier Ltd. All rights reserved.


Discovery of the Chemokine Receptor R5 (CCR5) as a co-receptor for HIV-1 infection revealed a novel approach to HIV-1 epidemic prevention and treatment.¹ CCR5, a member of the 7TM G-protein coupled receptor (GPCR) family, thus, became an attractive target pursued by the pharmaceutical industry. Significant research and development efforts have led to several small molecule clinic candidates² and one FDA approved drug.³ CCR5 antagonists, a new class of viral entry inhibitors, offer great promise to be the next generation of anti-HIV medicines.

Our laboratories have previously reported the identification of a class of 4,4-disubstituted piperidine carboxamide CCR5 antagonists exemplified by 1, demonstrating anti HIV-1 activity (Fig. 1).⁴ In order to further explore the structure–activity relationship (SAR) of this class, we then derivatized the core template 2 at the N-terminal of its piperidine ring with a variety of functionalities, leading to the discovery of several potent series of CCR5 antagonists. Herein, we wish to report the syntheses and structure-activity relationship of these series.

Synthesis of **2** was initiated by preparations of 1-(8-azabicyclo[3.2.1]oct-3-yl)-2-methyl-1*H*-benzimidazole (**3**) and Boc protected 4-(2-oxoethyl)-4-phenyl-1-piperidine (**4**) as depicted in Scheme 1. Following the literature procedures, ⁴ **3** was conveniently obtained from readily accessible materials. Preparation of

4 started from commercially available 4-phenyl-4-piperidinecarbonitrile hydrochloride (**5**). Boc protection of the piperdine ring, followed by Dibal-H reduction, afforded aldehyde **6**, thus, setting the stage for Wittig olefination with Ph_3PCH_2OMe . The resulting Z/E enol ether mixture **7** was then stirred with 90% formic acid at ambient temperature to produce the homologated aldehyde **4**. Its subsequent reductive amination with **3**, and the removal of Boc group made the core template **2** available (see Ref. 4 for m-F analog of **2**).

Derivatization of **2** started with nucleophilic displacements (Scheme 2). Thus, the treatment of **2** with 2-bromopyrimidine and *N*,*N*-diisopropylethylamine at elevated temperature gave **8a**. Tetrazole **8b** was synthesized via a two-step sequence. After installation of the cyano group to the nitrogen of the piperidine, efficient Bu₂SnO-catalyzed cyclization of the resulting nitrile with TMSN₃⁵

Figure 1. The carboxamide analog and the core template.

^{*} Corresponding author. Fax: +1 919 483 6053.

E-mail addresses: maosheng.a.duan@gsk.com, duanmaosheng@hotmail.com (M. uan).

Scheme 1. Reagents and conditions: (a) Boc_2O , iPr_2NEt , CH_2Cl_2 , rt, overnight, 99%; (b) i- Bu_2AlH , CH_2Cl_2 , 0 °C, 1 h, then methanol, citric acid, 88%; (c) $Ph_3P^*CH_2OCH_3Cl^-$, NaHMDS, THF, -78 °C to 0 °C, 68%; (d) 90% formic acid, rt, 2 h, 99%; (e) **3**, $NaBH(OAc)_3$, CH_2Cl_2 , rt, 3.5 h, 82%; (f) HCl, CH_2Cl_2 , rt, 1 h, 99%.

led to **8b**. Methylene insertion analogues **8c–e** were secured by reductive amination of **2** with corresponding aldehydes (Scheme 2).

Syntheses of trisubstituted ureas were straightforward (Scheme 3). Commercially available isocyanates were reacted with **2** to give **9a–d**. *N*,*N*,*N*′,*N*′-tetrasubstituted ureas were obtained in a one-pot, two-step syntheses using phosgene. The in situ generated 4-{2-[3-(2-methyl-1*H*-benzimidazol-1-yl)-8-azabicyclo[3.2.1]oct-8-yl]eth-yl}-4-phenyl-1-piperidinecarbonyl chloride was treated with secondary amines, delivering compounds **9e–f**. For the bulky

Scheme 2. Reagents and conditions: (a) 2-bromopyrimidine, iPr₂NEt, DMF, 80 °C, 2.5 h, 65%; (b) BrCN, K_2CO_3 , CHCl₃, 61 °C, 4 h, 99%; (c) TMSN₃, Bu₂SnO, toluene, 90 °C, 6 h, 75%; (e) R'CHO, NaBH(OAc)₃, iPr₂NEt, CH₂Cl₂, rt, 3–4 h, 39–87%.

N,*N*-diisopropyl amine derivative **9g**, the reaction sequence was reversed (Scheme 3).

Reaction of **2** with diphenylcycanocarbonimide under mild conditions afforded piperidinecarboximidoate **10**, which served as a precursor toward two different classes of compounds. Thus, in RONa/ROH (or RSNa/RSH) medium, displacement of the remaining phenoxy in **10** readily occurred to yield compounds **11a–c** and **12a–c**, respectively. Meanwhile, stirring **10** with amines produced *N*-cyano-*N*′-alkyl-4-{2-[3-(2-methyl-1*H*-benzimidazol-1-yl)-8-azabicyclo[3.2.1]oct-8-yl]ethyl}-4-phenyl-1-piperidine carboximidamides **13a–b** (Scheme 4).

Amino acids **14a–g** were obtained by a three-component coupling from **2**, glycoxylic acid and aryl boronic acids under Petasis conditions. Resulting amino acids were converted either into esters **15a–c** or amides **16a–c** by standard methods (Scheme 5).

All synthesized compounds were tested for both their ability to displace [125 I]-labeled MIP-1 β from the CCR5 receptor expressed on CHO cell membrane 7 and their antiviral activity in HOS cell against the Ba-L strain of HIV-1. 8 The data are presented in Tables 1–5.

Installation of pyrimidine (**8a**) or tetrazole (**8b**) to the N-terminal of the piperidine ring in **2** decreased activities by \sim 10-fold as compared to the reported carboxamides, ⁴ while the analogues obtained via reductive amination (**8c-e**) showed improved binding potencies. Notably, **8e** had an IC₅₀ = 3.0 nM in the MIP-1 β binding

Scheme 4. Reagents and conditions: (a) diphenylcyanocarbonimide, Et_3N , CH_2Cl_2 , rt, 4 h, 94%; (b) ROH/NaOR, rt, 1 h, 71–91%; (c) RSH/NaSR, rt, 1 h, 68–99%; (d) amine, MeOH, rt, overnight, 26–91%.

Scheme 5. Reagents and conditions: (a) glyoxylic acid monohydrate, RB(OH)₂, Et₃N, THF, rt to 50 °C, 4 h to 2 d, 71-94%; (b) TMSCHN₂, MeOH, rt, 1 h, 81-96%, (c) amine, HATU, Et₃N, DMF, rt, 2 h, 33-85%.

$$\begin{array}{c} R \\ N \\ H \end{array}$$

Scheme 3. Reagents and conditions: (a) RNCO, CH₂Cl₂, rt, overnight, 63–99%; (c) phosgene, iPr₂NEt, CH₂Cl₂, rt, 4 h; (d) R'₂NH, rt, overnight, 57–63%.

Table 1 Inhibitory potency of heterocycle analogues 8a-d in the 125 I-[MIP-1 β] binding assay and HOS cell assay (Scheme 2)

Compds	R	R'	MIP-1β IC ₅₀ (μM)	HOS IC ₅₀ (μM)
8a	$\langle N \rangle$		0.32	1.91
8b	N - N ;		0.129	2.86
8c		N '	0.074	1.79
8d		√ N O N /	0.013	0.059
8e		Co /	0.003	0.035

Table 2 Inhibitory potency of urea analogues $\bf 9a-g$ in the 125 I-[MIP-1 β] binding assay and HOS cell assay (Scheme 3)

Compds	R	R'	MIP-1β IC ₅₀ (μM)	HOS IC ₅₀ (μM)
9a	> +		0.0040	0.0420
9b	\rightarrow $+$		0.0070	0.0270
9c	<u></u>		0.0060	0.1030
9d	F_3C		0.2650	2.5690
9e		CH ₃	0.0210	0.1220
9f		CH ₃ CH ₂	0.0240	0.2400
9g		<u>}</u>	0.0180	0.1370

Table 3 Inhibitory potency of cyano-imido(thio)carbamates (**11a-c** and **12a-c**) and guanidines **13a-b** in the 125 I-[MIP-1 β] binding assay and HOS cell assay^a (Scheme 4)

Compds	R	X	MIP-1βIC ₅₀ (μM)	HOS IC ₅₀ (μM)
11a	CH ₃	0	0.0020	0.0075
11b	<u>} </u>	0	0.0030	0.0255
11c		0	0.0070	0.0371
12a	CH ₃	S	0.0230	n.t.
12b	<u>} </u>	S	0.0130	0.1014
12c		S	0.0400	0.0.094
13a	CH ₃	NH	0.0110	0.1086
13b	0 ,	N	0.0050	0.0207

a n.t.: not tested.

Table 4Inhibitory potency of amino acid analogues **14a–g** in the ¹²⁵I-[MIP-1β] binding assay and HOS cell assay (Scheme 5)

and nos cen assay (seneme s)						
Compds	R	Y	MIP-1 β C ₅₀ (μ M)	HOS IC ₅₀ (μM)		
14a		Н	0.0080	0.0097		
14b	MeO —	Н	0.0070	0.0248		
14c	F—	F	0.0040	0.0220		
14d		Н	0.0070	0.0292		
14e		Н	0.0050	0.0150		
14f		Н	0.0030	0.0068		
14g	CI	Н	0.0230	0.0060		

Table 5 Inhibitory potency of amino acid derivatives **15a-c** and **16a-c** in the 125 I-[MIP-1 β] binding assay and HOS cell assay^a (Scheme 5)

Compds	R	R'	MIP- 1β IC ₅₀ (μ M)	HOS IC_{50} (μ M)
15a	<u></u>	CH ₃	0.0050	0.0103
15b	F—	CH ₃	0.0009	0.0150
15c		CH ₃	0.0130	0.2160
16a	F—	Н	n.t.	0.0520
16b	F	CH ₃	n.t.	0.0202
16c	$F \longrightarrow \frac{1}{1}$	n-Bu	n.t.	0.7879

assay. This suggests that a direct attachment with rings may affect the conformation of the central piperidine for bindings. More flexible appendage may favor such interactions, which translate into improved antiviral activity (Table 1).

Trisubstituted ureas $(\mathbf{9a-c})$ improved binding affinities dramatically, reaching single-digit nM levels. Surprisingly, $\mathbf{9d}$, from the same group of the urea, had a binding IC₅₀ 265 nM. The \sim 40-fold decrease in potency was presumably due to the replacement of aliphatic moiety with a highly hydrophobic *para*-trifluoromethyphe-

Table 6
Pharmacokinetics of the selected compounds 11a, 14a, 15b, and 16b in rat at 1 mg/kg

Compds	Cl (mL/min/kg)	$t_{1/2}$ (h)	V _{dss} (L/kg)	%F
11a	22.8	2.1	1	15
14a	117		3.5	0
15b	39.3	2.3	6.5	53
16b	43	6.1	16.5	37

nyl group. Despite their exceptional binding potency, the antiviral activity of the trisubstituted ureas need to be further enhanced. Meanwhile, the tetrasubstituted ureas ($\mathbf{9e}-\mathbf{f}$) were less impressive due to their relatively lower IC₅₀s in both the binding and antiviral assays (Table 2).

Cyano-imidocarbamates (**11a-c**) demonstrated comparable binding affinity to the trisubstituted ureas. Moreover, **11a** turned out to be highly potent in antiviral inhibition with HOS $IC_{50} = 7.5$ nM. Their thio counterparts (**12a-c**) and the cyano-guanidine analogues (**13a-b**) were, however, less active (Table 3).

Amino acids (14a-g) were a very promising series, which, in general, retained the binding potency in the single-digit nM range. Importantly, their potent binding affinities successfully translated into high antiviral activities as shown in Table 4 (14a, 14f, and 14g). In addition, it was observed that amino acid analogues helped to minimize hERG/QTc liabilities sometimes observed with related series discussed elsewhere (Kazmierski, Duan et al. manuscript in preparation) presumably due to the polarities of the amino acids. Conversion of selected amino acid analogues into esters (15a-c) or amides (16a-c) with the aim of improving cell permeability appeared to have no significant impact on the activity, except that relatively large amine was incorporated (16c) (Table 5).

The pharmacokinetics of lead compounds **11a**, **14a**, **15b**, and **16b** were evaluated in Sprague Dawley rats at 1 mg/kg using 5% mannitol with 0.05% acetic acid as dose vehicle. **11a** had acceptable

clearance, but its bioavailability was moderate (15%). Disappointingly, **14a**, a representative of the most potent series had no oral exposure due to extremely high clearance and potentially poor permeability. Masking carboxylic acid functionality of **14c** either as an ester **15b** or as an amide **16b** did boost bioavailability, but their clearances remained high (Table 6).

In conclusion, several series of potent CCR5 antagonists have been discovered via derivatization at the N-terminal of the piperidine ring of **2**. All compounds were tested for both binding and antiviral activities. Amino acid derivatives have shown significant promise, but their PK properties need further improvement.

References and notes

- Dragic, T.; Litwin, V.; Allaway, P. G.; Martin, R. S.; Huang, Y.; Nagashima, A. K.; Cayanan, C.; Maddaon, J. P.; Koup, A. R.; Morroe, P. J., et al Nature 1996, 381, 667.
- Kazmierski, W. M.; Gudmundsson, K. S.; Piscitelli, S. C. Annu. Rep. Med. Chem. 2007, 42, 301.
- 3. Wood, A.; Armour, D. Prog. Med. Chem. 2005, 43, 239.
- Kazmierski, W. M.; Aquino, C.; Chauder, B.; Deanda, F.; Ferris, R.; Jones-Hertog, D.; Kenakin, T.; Koble, C.; Watson, C.; Wheelan, P.; Yang, H.; Youngman, M. J. Med. Chem. 2008, 51, 6538.
- 5. Wittenberger, S. J.; Donner, B. G. J. Org. Chem. 1993, 58, 4139.
- 6. Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc. 1997, 119, 445.
- Watson, C.; Jenkinson, S.; Kazierski, W.; Kenakin, T. Mol. Pharmacol. 2005, 67, 1268.
- Jenkinson, S.; McCoy, D.; Kener, S.; Ferris, R.; Lawrence, W.; Fox, T.; Smith, C. Recept. Channels 2003, 9, 117.